--- /dev/null
+%!TEX root = ../hdrmain.tex
+
+\begin{figure}[htb]
+ \centering
+
+ %\tikzexternalenable
+ \begin{circuitikz}[]
+ %\ctikzset{logic ports origin=center}
+ \ctikzset{diodes/scale=0.6}
+ \draw (0,0) node[and port] (andgate) {}
+ (andgate.in 1) to[short, -o] ++(-0.5,0) node[anchor=east] {Frequency}
+ (andgate.in 2) to[short, -o] ++(-0.5,0) node[anchor=east, o-] {Amplitude}
+ (andgate.out) node[anchor=west] {};
+
+ \draw (andgate.out) -- ++(0.5,0) node[nfet,bodydiode, anchor=G](nmos){};
+
+ \draw (nmos.S) node[tlground](GND){};
+
+ \draw (nmos.D) to[short] ++(-0.5,0) to[short] ++(0,0.5) to[L, l=actuator] ++(0,1) to[short] ++(0,0.5) to[short, -*] ++(0.5,0) node[vcc](vcc){3V3};
+
+ \draw (nmos.D) -- ++(0.5,0) to[short] ++(0,0.5) to[D] ++(0,1) to[short] ++(0,0.5) to[short] ++(-0.5,0);
+
+ %\draw (0,0) node[above]{$F$} to[short, o-] ++(0.5,0)
+ %node[ieeestd and port, anchor=in 1](trans){};
+% node[op amp, noinv input up, anchor=+](OA){\texttt{OA1}};
+
+
+ %(node[npn]{Q}
+ \end{circuitikz}
+ %\tikzexternaldisable
+ \caption[]{}
+ \label{fig:actuatorcircuit}
+\end{figure}
\usepackage{pgfplots}
\usepackage{tikz}
\usetikzlibrary{calc,arrows.meta,arrows,positioning,decorations.text}
+\usepackage[siunitx]{circuitikz}
\usepgfplotslibrary{external}
%\tikzexternalize[hdrmain,prefix=tikz/]
\tikzexternalize[prefix=tikz/]
\end{centering}
\noindent\begin{center}
- \noindent\begin{tabular}{@{}l@{\hspace{2.5mm}}l@{\hspace{2.5mm}}l@{}}
- \emph{Rapporteurs :} & Laurence Nigay & Professeure à Université Grenoble Alpes\\
- & XXX & Professeur à XXX\\
- & XXX & Professeur à XXX\\
+ \noindent\begin{tabular}{@{}l@{\hspace{2.5mm}}l@{\hspace{2.5mm}}l@{\hspace{2.5mm}}l@{}}
+ \emph{Rapporteurs} & Laurence Nigay & Professeure & Université Grenoble Alpes\\
+ & XXX & Professeur & XXX\\
+ & XXX & Professeur & XXX\\
\\
- \emph{Examinateurs :} & Michel Beaudouin-Lafon & Professeur à Sorbonne Université\\
- & XXX & Professeur à XXX\\
- & XXX & Professeur à XXX\\
- & XXX & Professeur à XXX\\
+ \emph{Examinateurs} & Michel Beaudouin-Lafon & Professeur & Université Paris-Saclay\\
+ & XXX & Professeur & XXX\\
+ & XXX & Professeur & XXX\\
+ & XXX & Professeur & XXX\\
\\
- \emph{Garant :} & Stéphane Huot & Directeur de Recherches chez Inria\\
+ \emph{Garant} & Stéphane Huot & Directeur de Recherches & Inria\\
\end{tabular}
\end{center}
%\vspace*{\stretch{1}}
Therefore, I worked on a way to provide haptic feedback for 3D interaction.
The design rationale was to keep the users' hands free since this was the main motivations of this type of sensor.
-Otherwise tactile feedback could be integrated in a controler.
-Therefore we opted for a wearable, with the idea to
+If users have to hold a device for haptic feedback, this device could also serve as an input controller.
+%Otherwise tactile feedback could be integrated in a controler.
+Therefore we opted for a wearable haptic device for the wrist.
\paragraph{Apparatus}
+There are several reasons to discuss the design and implementation of the prototype in this document.
+First it is designed for expressivity with simplicity.
+Second the iterative process is an interesting case study that led to guidelines regarding the implementation of interative systems.
+It helped me with the ideation of the concept depicted in \reffig{fig:hapticpath} in \refchap{chap:output}.
+
+We discussed the output vocabulary of vibrotactile feedback in \refchap{chap:output}.
+The independent control of both the frequency and amplitude of the signal is necessary for an expressive output vocabulary.
+The typical way to drive precise vibrotactile actuators is to use a sound generation system.
+This is convenient because the parameters of the signal are the same: frequency, amplitude, and shape.
+The main difference is the frequency range: 1--1000Hz for haptics and 200--20kHz for sound.
+Managing the amplitude is easier with vibrations because the required amplitude levels are much lower.
+In the end, the shape parameter is in my opinion the bottleneck of complexity for the implementation of vibrotactile devices because it imposes a much higher sampling rate.
+
+For the sake of simplicity, I opted for a simple design that enabled the precise control of frequency and anmplitude at the cost of a low control of the signal shape.
+The overall idea is to control the frequency and amplitude with PWM signals generated by a simple microcontroller.
+The frequency signal typically ranges between 1--1000Hz.
+The amplitude is controlled with the duty cycle of a high-frequency signal.
+We used voice coil actuators, therefore they behave like low-pass filters, which stabilizes this high-frequency signal to a lower-voltage signal, hence reducing the amplitude.
+Our prototypes used 16MHz controllers with 8 bits timers, which gives a 62.5kHz loop with 256 levels of amplitude.
+
+\input{figures/actuatorcircuit.tex}
+
+\begin{figure}[htb]
+ \centering
+ \includegraphics[width=\textwidth]{figures/wristband3protos}
+ \label{fig:wristbandprototypes}
+ \caption[Haptic wristband prototypes]{Three iterations of haptic wristband prototypes.}
+\end{figure}
+
\subsection{Quantitative limitations}
focus on feedback rather than interaction